q^2+5q+2=-q^2+35

Simple and best practice solution for q^2+5q+2=-q^2+35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q^2+5q+2=-q^2+35 equation:



q^2+5q+2=-q^2+35
We move all terms to the left:
q^2+5q+2-(-q^2+35)=0
We get rid of parentheses
q^2+q^2+5q-35+2=0
We add all the numbers together, and all the variables
2q^2+5q-33=0
a = 2; b = 5; c = -33;
Δ = b2-4ac
Δ = 52-4·2·(-33)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-17}{2*2}=\frac{-22}{4} =-5+1/2 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+17}{2*2}=\frac{12}{4} =3 $

See similar equations:

| (0.3x=2.1)/3=0.4 | | 2=9(3+5e) | | 0.4x+0.9=3.3 | | -q^2+35=q^2+5q+2 | | 4^x=6.25 | | 150=5r | | r+16=-4 | | 16=y+8 | | 2.6=8.4+y | | 4x+4=3x-18 | | F(x)=3x^2+24+45 | | T=10x(x+5) | | 2.3=7.8+y | | 9-t/13=7 | | 19x+12=9x-3 | | x/3(-3x/5)=0 | | 11y-82=9y-2 | | 2x-0.8=0.11x-0.15 | | 37-6x=-6x35 | | 9x-12=6x-24 | | 9x-12=9x-3 | | 10-q^2=2q+1 | | Y-8x=10 | | X+5+3x+5=5x-3 | | 37-6x=5-6(x-5) | | 1/2x-6=2/3-1 | | 10(n+1)=10+10(1) | | 11×k=-33 | | 10(n+1)=10n+(1) | | 4−8=3−n/5 | | 4−8=3−n5 | | 34/x-(-17)=4 |

Equations solver categories